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Abstract: This study presents a micro-scale approach for the cropland suitability assessment of per-

manent crops based on a low-cost unmanned aerial vehicle (UAV) equipped with a commercially 

available RGB sensor. The study area was divided into two subsets, with subsets A and B containing 

tangerine plantations planted during years 2000 and 2008, respectively. The fieldwork was per-

formed on 27 September 2021 by using a Mavic 2 Pro UAV equipped with a commercial RGB sensor. 

The cropland suitability was performed in a two-step classification process, utilizing: (1) supervised 

classification with machine learning algorithms for creating a vegetation mask; and (2) unsuper-

vised classification for the suitability assessment according to the Food and Agriculture Organiza-

tion of the United Nations (FAO) land suitability standard. The overall accuracy and kappa coeffi-

cients were used for the accuracy assessment. The most accurate combination of the input data and 

parameters was the classification using ANN with all nine input rasters, managing to utilize com-

plimentary information regarding the study area spectral and topographic properties. The resulting 

suitability levels indicated positive suitability in both study subsets, with 63.1% suitable area in 

subset A and 59.0% in subset B. Despite that, the efficiency of agricultural production can be im-

proved by managing crop and soil properties in the currently non-suitable class (N1), providing 

recommendations for farmers for further agronomic inspection. Alongside low-cost UAV, the open-

source GIS software and globally accepted FAO standard are expected to further improve the avail-

ability of its application for permanent crop plantation management. 

Keywords: unmanned aerial vehicle; tangerine plantation; vegetation index; FAO land suitability; 

artificial neural network; open-source GIS software 

 

1. Introduction 

For economies to sustain, permanent natural resources including climate, soil, and 

topography should be used rationally and sustainably for agricultural production [1]. The 

World Commission on Environment and Development defines sustainable development 

as meeting current agricultural production demands without compromising the capacity 

of future generations to meet their own needs [2]. In addition, more crop yield is needed 

to provide necessities because of fast population expansion and migration [3]. Natural 

resources including forests, pastures, wetlands, and agricultural fields are converted into 

settlements or industrial zones, which results in the underutilization of these regions [4]. 

Therefore, it is crucial to develop a land management plan which supports the conserva-

tion and optimal usage of natural resources for future generations. Determining whether 

a particular land is suitable for agriculture is a necessary step in land use planning [5]. A 

decision to employ existing natural resources based on the predicted cropland suitability 

is made as part of the process of determining amenities [6]. The process of assessing a 
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specific area of land suitability, such as in agriculture or forestry, and its level of environ-

mental sustainability, is known as cropland suitability assessment [7]. The analysis of 

complementary abiotic environmental data, climate, soil, and topography, is required to 

determine the suitability of agricultural land [8]. As permanent crops require initial sub-

stantial investments and the long-term commitment of the agricultural land, suitability 

analyses are particularly of interest for agricultural land management [9]. This approach 

also enables the rational utilization of the abandoned agricultural land for the cultivation 

of permanent crops, positively affecting the sustainability of agricultural production [10]. 

Open data remote sensing satellite missions can observe the surface of the Earth with 

a spatial resolution in the range between 10 m and 1 km [11]. Due to the relationship of 

reflectance in the visible, red-edge, and near-infrared spectral bands with crop health and 

growth, they are frequently employed to evaluate cropland suitability [12]. Missions with 

moderate spatial resolution, such as Landsat and Sentinel-2 missions, are frequently em-

ployed in agriculture, and their temporal resolution spans from a few days to two weeks 

[13]. The fact that most of the world’s land is frequently obscured by clouds, impairing 

the Earth observation from space, is one of the main obstacles to utilizing satellites to 

monitor the Earth’s surface for agricultural purposes [14]. Their spatial resolution is too 

low to detect vegetation properties on a sub-decimeter level in smaller agricultural parcels 

typical for permanent crops, which is another problem [15]. This is crucial because only 

spatial patterns or textures that are discernible at reasonably high spatial resolution may 

be used to identify changes in vegetation growth [16]. As a result, satellite missions cannot 

fully address the remote sensing needs of agriculture. Therefore, unmanned aerial vehi-

cles (UAVs) became highly popular to close the gaps in observing such agricultural fields 

[17]. The RGB (red-green-blue) and multispectral sensors mounted on UAVs can be tuned 

to monitor crop health, allowing farmers to react in time and apply the necessary fertilizer 

and insecticide [18]. UAVs are used to monitor the field in 3D for early soil analysis that 

is required for the planning of seeding using the variable-rate-technology (VRT) princi-

ples in precision agriculture [19]. After sowing, these data are used to plan irrigation, and 

for the required amounts of nitrogen in certain zones of the cultivated area [20]. UAVs are 

also used for crop spraying, using sensors to apply the needed pesticide amount in a spe-

cific location [21]. As a result, a reduced quantity of fertilizers and pesticides are applied, 

reducing groundwater contamination. The application of aerial spraying using UAVs 

might even reduce the spraying duration multiple times compared to traditional spraying 

[22]. 

Vegetation indices are frequently utilized to quantify crop properties, out of which 

the most commonly used is the normalized difference vegetation index (NDVI) [23]. How-

ever, its computation requires farmers to acquire multispectral sensors mounted on 

UAVs, which might not be affordable in less developed parts of the world. To overcome 

this, researchers focused on the development of processing methods that utilize UAV im-

ages obtained by low-cost RGB sensors. Various spectral indices, as alternatives to NDVI 

which utilize blue, green, or red spectral bands, were developed and evaluated in the pro-

cess. These include the normalized green-red difference index (NGRDI) [24], green leaf 

index (GLI) [25], and Kawashima index (IKAW) [26]. Such studies successfully imple-

mented these indices collected using low-cost UAVs in crop monitoring [27], creating pre-

scription maps in precision agriculture [28], and analyzing specific phenological stages 

[29]. Meanwhile, no comprehensive methodology for cropland suitability assessment uti-

lizing low-cost UAVs was developed so far at a micro-scale, being largely focused on the 

macro-scale areas, such as national or county scales [30,31]. Besides data collection using 

low-cost UAVs, the image processing segment using the open-source geographic infor-

mation system (GIS) software complements the global accessibility to farmers by ensuring 

state-of-the-art machine learning classification methods [32]. 

The aim of this study was to provide a framework for the cropland suitability assess-

ment by combining two requirements for effective agricultural land management at a mi-

cro-scale: (1) using a low-cost UAV equipped with the commercially available RGB sensor, 
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and (2) using open-source GIS software for the cropland suitability assessment. These 

components provide a widespread solution to the farmers by minimizing their initial fi-

nancial expenditures in planning the utilization of agricultural land. This study specifi-

cally focused on the cropland suitability of permanent crops, using tangerine plantation 

as a reference case. 

2. Materials and Methods 

2.1. Study Area 

The study area is located in southern Croatia, in the Neretva river valley (17°32′ E, 

43°01′ N) (Figure 1). The specificity of agricultural production in this area is the proximity 

to the sea, a warmer climate which during the summer extends into the fall, and the colder 

weather lasts longer during the spring [33]. The average amount of precipitation in the 

study area is about 1300 mm per year, but farmers face a problem when 65–75% of that 

amount falls during the winter. Therefore, the irrigation system network that has been 

created is extremely relied upon for agricultural production. The study area was divided 

into two subsets, with subsets A and B containing tangerine plantation planted during 

years 2000 and 2008, respectively. The total study area covers 1.94 ha, with each subset 

covering the equal area of 0.97 ha. 

 

Figure 1. Tangerine plantation subsets in the Neretva river valley representing a study area. 

2.2. Fieldwork and Data Acquiring 

The fieldwork was performed on 27 September 2021, starting at 10 a.m. local time by 

study area reconnaissance and setting up global navigation satellite system (GNSS) orien-

tation points for the georeferencing of UAV imagery. A total of 10 GNSS orientation points 

were placed regularly over a study area, and their coordinates were acquired using a 
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Trimble R8x GNSS receiver with the Croatian Positioning System (CROPOS). Its high-

precision positioning service enabled real-time-kinematic (RTK) positioning with 2 cm 

horizontal and 4 cm vertical accuracy [34]. The fieldwork preceded a beginning harvest of 

tangerines, which began to mature in the study area, as displayed in Figure 2. 

 

 

Figure 2. A terrestrial representation of tangerine trees during the fieldwork in the study area. 

A low-cost Mavic 2 Pro UAV equipped with a 1” CMOS RGB sensor [35] was used 

for image collection. The images were acquired from a relative flight altitude of 50 m, 

resulting in a total of 137 images over a 2.0 ha area. Image overlap was set to 80% for front 

and 70% for side overlap. The photogrammetry processing was performed in Agisoft 

Metashape Professional software v1.5.2 (St. Petersburg, Russia) using the Structure-from-

motion algorithms. The dense point cloud consisted of 5,316,064 points, producing the 

spatial resolution of the digital orthophoto and digital surface model of 1.1 cm and 8.9 cm, 

respectively. Both rasters were reprojected to the Croatian Terrestrial Reference System 

(HTRS96/TM, EPSG: 3765) and harmonized to the 10 cm spatial resolution. 

2.3. Input Data for Cropland Suitability Assessment 

Data processing in GIS was performed in two open-source software, SAGA GIS 

v7.9.0 (Göttingen, Germany) and QGIS v3.10 (Grüt, Switzerland). The input data con-

sisted of three primary data groups: (1) spectral bands, (2) spectral indices, and (3) topo-

graphic indices. The spectral bands consisted of blue (B), green (G) and red (R) spectral 

bands expressed in 8-bit digital number (DN) values ranging from 0 to 255. These were 

used for the calculation of three spectral indices: NGRDI, GLI and IKAW, which enabled 

the characterization of vegetation properties in previous studies [24,25,28]. Moreover, 

these indices focus either on quantifying vegetation variability using green and red reflec-

tance (NGRDI), using red and blue reflectance as a complementary index to NGRDI 

(IKAW) [36], or utilizing the combination of all three visible bands for the representation 

of biomass [37]. These indices represented an alternative to more popular indices, such as 

NDVI, which could be utilized with the low-cost UAVs equipped with RGB sensor [38]. 

Despite utilizing only spectral information from the visible part of the spectrum, NRGDI 

and GLI reliably represent vegetation leaf area index, producing a high correlation in a 

study by Liu and Wang [39]. The selected spectral indices were calculated according to 

the equations displayed in Table 1. 
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Table 1. Spectral indices used in the study. 

Spectral Index Abbreviation Equation Reference 

Normalized Green Red Difference Index NGRDI NGRDI = 
G − R

G + R
 [40] 

Green Leaf Index GLI GLI = 
2G − R− B

2G + R + B
 [41] 

Kawashima index IKAW IKAW = 
R − B

R + B
 [42] 

In contrast to the spectral data defined in the two-dimensional area by spectral bands 

and indices, the third input data group completed the three-dimensional representation 

of the study area by including three topographic indices derived from the digital surface 

model. These were potential annual total insolation [43], flow accumulation [44] and wind 

exposition [43] calculated in SAGA GIS v7.9.0 (Göttingen, Germany). The potential total 

insolation was calculated as a sum of direct and diffuse insolation during the year 2022, 

using a solar constant of 1367 Wm–2, and generalizing atmospheric effects by a 70% 

lumped atmospheric transmittance parameter. Flow accumulation modelled the intensity 

of surface water retention in the field expressed in down flow area, using the multiple 

flow direction method proposed by Freeman [45]. Wind exposition was represented as a 

dimensionless index, with its values proportionally indicating areas more sheltered (be-

low 1) and exposed (above 1) to wind. Correlation analysis using Pearson’s correlation 

coefficient of all nine input rasters was performed to evaluate the complementarity of in-

put data [46]. The individual rasters from three input data groups used in the study are 

presented in Figure 3. 
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Figure 3. The display of input data used for the cropland suitability assessment from the digital 

orthophoto and digital surface model using low-cost UAV imaging. 
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2.4. Cropland Suitability Assessment 

The proposed cropland suitability assessment method for permanent crops at the mi-

cro-scale based on low-cost UAV imaging is summarized in Figure 4. The fundamental 

suitability assessment approach relies on two-step classification: (1) supervised classifica-

tion using machine learning to reliably determine vegetation mask and remove non-veg-

etation areas from further processing; and (2) unsupervised classification using K-means 

to rank vegetation classes according to Food and Agriculture Organization of the United 

Nations (FAO) standard for land suitability assessment [47]. 

 

Figure 4. The proposed cropland suitability assessment method at the micro-scale. 

Training/test data were delineated according to the ground truth observations into 

two classes (vegetation and non-vegetation). The total area of training/test data was 368.5 

m2, covering 1.9% of the study area. The division of training and test data was performed 

using the stratified random split to a 60/40 ratio, creating training and test data sets cov-

ering the area of 221.1 m2 (1.1% of the study area) and 147.4 m2 (0.8% of the study area), 

respectively. The input data into supervised classification using machine learning was 

evaluated in three variants: variant 1 with three rasters (spectral bands), variant 2 with six 

rasters (spectral bands and indices), and variant 3 with nine rasters (spectral bands and 

indices, topographic indices). Three machine learning algorithms were evaluated as well 

according to recommendations in previous research [48], including Random Forest (RF), 

Support Vector Machine (SVM), and Artificial Neural Network (ANN). Besides their ro-

bustness and high classification accuracy, the selection of these three methods comprises 
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representative methods of established machine learning approaches: RF for ensemble de-

cision trees, ANN for artificial neural networks and SVM for supervised support vector 

machines [49]. The parameters for supervised classification were evaluated and selected 

on an iterative basis, according to the highest reached overall accuracy. RF was performed 

with the maximum tree depth of 25 and 1SE (one-standard-error) rule to ensure a higher 

resistance to training data noise and to produce more compact decision trees. The selected 

SVM type for the classification was c-support vector classification with a polynomial ker-

nel and a gamma coefficient of 1. ANN consisted of five layers in the network, not includ-

ing input and output layers, each with five neurons. The maximum number of iterations 

was set to 300 and activation was performed using the sigmoid function. The accuracy 

assessment of the supervised classification was performed using the error matrix, as a 

standard descriptive tool for evaluating the classification accuracy of remotely sensed 

data [50]. Overall accuracy and kappa coefficients quantified the accuracy, with higher 

values proportionally indicating higher classification accuracy. 

According to the most accurate supervised classification result, non-vegetation pixels 

were dissolved and extracted from the study area, providing a vegetation mask for the un-

supervised classification. The nine input rasters were clipped to the extent of the vegetation 

mask and inputted in the K-means unsupervised classification using the Hill-Climbing var-

iant in five classes. The resulting classes were ranked according to the FAO land suitability 

specifications [51], designating the highly suitable (S1), moderately suitable (S2), marginally 

suitable (S3), currently non-suitable (N1), and permanently non-suitable (N2) classes. 

3. Results 

The correlation matrix justifies the selection of three input data groups (spectral bands, 

spectral indices, topographic indices), as individual rasters from their respective groups re-

sulted in low correlation with rasters from other groups. As for the within-group relation-

ships, R with G and B resulted in an extreme Pearson’s correlation coefficient (Figure 5). 

 

Figure 5. Correlation matrix based on Pearson’s correlation coefficients (TI: total insolation, FA: flow 

accumulation, WE: wind exposition). 
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All three evaluated machine learning algorithms for the supervised classification of 

vegetation and non-vegetation areas enabled high reliability in creating vegetation mask 

(Table 2). The most accurate combination of the input data and parameters was the clas-

sification using ANN with all nine input rasters, managing to utilize complimentary in-

formation regarding study area spectral and topographic properties. This combination 

resulted in the highest overall accuracy and kappa coefficient, performing especially well 

in recognizing non-vegetation areas (Figure 6). The RF classification results also enabled 

very high accuracy in creating vegetation mask, ranking a close second behind ANN. 

Meanwhile, SVM was very sensitive to the selection of input rasters, resulting in the low-

est classification accuracy for all variants. Figure 7 displays the distribution of training/test 

data for supervised classification in the study area, as well as the resulting vegetation 

mask from the most accurate classification result. 

Table 2. Accuracy assessment of the supervised classification results for the creation of vegetation 

mask. 

Classification  

Algorithm 
Input Data Overall Accuracy Kappa 

RF 

Variant 1 0.994 0.984 

Variant 2 0.993 0.981 

Variant 3 0.994 0.985 

SVM 

Variant 1 0.907 0.762 

Variant 2 0.964 0.903 

Variant 3 0.965 0.911 

ANN 

Variant 1 0.993 0.983 

Variant 2 0.995 0.988 

Variant 3 0.996 0.990 

Variant 1: spectral bands; Variant 2: spectral bands and indices; Variant 3: spectral bands and indi-

ces, topographic indices. 

  

Figure 6. Error matrices from three evaluated machine learning algorithms and three input data 

variants. 



Agronomy 2023, 13, 362 10 of 17 
 

 

 

Figure 7. The display of training/test data used for supervised classification and the vegetation mask 

calculated from the classification. 

The results from the unsupervised classification, ranked according to the FAO suita-

bility standard, showed a similar representation of individual suitability classes in both 

study subsets regarding the relative area, while subset A covered a larger area due to 

higher biomass (Table 3). The total area of suitable classes in subsets A and B resulted in 

63.1% and 59.0%, respectively, while the lowest class area indicated permanently non-

suitable land for tangerine cultivation. Class means results showed variability, particu-

larly for topographic indices, total insolation, and flow accumulation (Table A1). The final 

suitability map produced by the proposed cropland suitability assessment method at the 

micro-scale is presented in Figure 8. 

Table 3. The absolute and relative area of FAO suitability classes for tangerine cultivation. 

Study Area Sub-

set 

Area per FAO Suitability Class 

S1 S2 S3 N1 N2 

Subset A 2493.7 m2 (28.5%) 2060.8 m2 (23.1%) 1020.8 m2 (11.5%) 2698.5 m2 (30.7%) 536.4 m2 (6.2%) 

Subset B 1787.0 m2 (24.3%) 1621.3 m2 (22.0%) 922.5 m2 (12.7%) 2383.3 m2 (32.6%) 645.7 m2 (8.4%) 
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Figure 8. The final suitability map produced by the proposed cropland suitability assessment 

method at the micro-scale. 

4. Discussion 

The application of UAVs in agriculture is becoming common, as is the use of other 

machinery for agricultural production. The major impact is the low cost of UAVs com-

pared to state-of-the-art agricultural machinery [19], and it allows for advanced crop mon-

itoring that gives the farmer a lot of information to work with. By adjusting land manage-

ment plans according to cropland suitability assessment results, farmers can increase 

yields and reduce crop damage [8]. The amount of mineral fertilizer and pesticides is also 

reduced, which has a positive effect on the environment [52]. While a low-cost UAV 

equipped with an RGB sensor presents an affordable solution for cropland suitability as-

sessment and crop monitoring at a micro-scale, they provide restricted observation capa-

bilities in agriculture. UAVs with hyperspectral, multispectral, or thermal sensors, can 

more reliably detect water stress in crops to determine which parts of the agricultural area 
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need irrigation [53]. Furthermore, it is possible to calculate significantly more vegetation 

indices, which determine the relative density and health of the crop [54]. Measurements 

spanning several narrow-band waves (10 nm) with additional bands in the visible, near-

infrared, and the short-wave infrared regions of the spectrum are also made possible via 

hyperspectral sensors [55]. Thus, more accurate vegetation indices are produced by choos-

ing significant bands in hyperspectral data, which is essential for enhancing the efficiency 

of LAI index calculation [56]. Novel technologies such as high throughput phenomics can 

additionally enhance crop health assessment, providing a better insight into abiotic stress 

tolerance using automated solutions based on remote sensing [57]. Nevertheless, low-cost 

UAVs equipped with RGB cameras are presently available for a wide range of farmers 

looking to make initial cropland suitability analyses based on vegetation indices and topo-

graphic properties as used in this study. 

To maximize the accuracy of suitability assessment results, this study reinforced the 

necessity to evaluate several input data variants and machine learning classification algo-

rithms. Several previous studies confirmed these findings, especially considering vegeta-

tion indices calculated from the data from the visible part of the spectrum, obtainable by 

low-cost RGB sensors. Early research by Hunt et al. [58] examined the relationship be-

tween alfalfa, maize, and soybean biomass levels, and the NGRDI index. Higher mean 

visible reflectance for a particular NGRDI showed that low chlorophyll content was re-

lated to greater intensity. To further increase its applicability in cropland suitability stud-

ies, the red spectrum of the digital camera’s red filter might be moved to a longer wave-

length (about 680 nm), which would make NGRDI more sensitive to variations in chloro-

phyll content [59]. In the study by García-Martínez et al. [60], the triangular greenness 

index (TGI) and object-oriented classification were used to analyze the green cover, and a 

correlation coefficient of 0.77 was found between the green cover and maize grain yield. 

Additionally, the findings from the study of Hunt et al. [61] showed that TGI has the po-

tential for managing nitrogen fertilizer until was saturated at high amounts of chlorophyll 

concentration but the correlation was independent of the spectral resolution of the sensor. 

These findings could provide a basis for the upgrade of the proposed cropland suitability 

assessment methods at the micro-level for the variable rate application in precision agri-

culture, providing the required crop potential zones [62]. The creation of input data vari-

ants with three increasingly complex levels of image preprocessing collected using UAV 

with RGB camera, with variant based on spectral bands as a baseline, indicated a constant 

minor classification superiority of all evaluated input data. While using the most afforda-

ble UAVs in crop suitability assessment, this study supported the previous observation of 

the advantage of time investment in image preprocessing, resulting in a cost-efficient in-

crease in classification accuracy [63]. Despite RF frequently being more accurate to SVM 

and ANN based on UAV images for cropland suitability and health analyses [64,65], there 

is an increasing number of cases in which ANN provides superior results in permanent 

and perennial crop analyses in comparison to RF, SVM, and similar machine learning 

methods. Besides its superiority in tangerine plantation suitability assessment from this 

study, Syazwani et al. [66] achieved the highest accuracy using ANN in precision agricul-

ture of pineapple plantation, while Khan et al. [67] noted its popularity in various segment 

of oil palm cultivation. Nevertheless, due to classification accuracy results being depend-

ent on input data properties, it is still important to evaluate multiple machine learning 

methods to ensure optimal solution for a particular case [68]. 

Along with the analysis of vegetation indices, it is advisable to regularly perform soil 

analysis in order to increase yields and reduce production costs as part of cropland suita-

bility analysis. Present regulations for soil analysis in Croatia [69] require only one sample 

per parcels with an area larger than 1 ha, collected as the average from 20–25 subsamples. 

Therefore, conventional soil sampling regulations disregard in-field variabilities and pro-

vide an overview of generalized soil condition. With the proposed cropland suitability 

assessment approach, farmers can identify low performance areas and collect additional 

samples in critical areas and using this information to detect nutrient deficiency in such 
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areas. The tangerine plantations in the study area are very sensitive to soil sodium content, 

whose high amount impairs yield quality [70]. Regular water analysis for irrigating and 

monitoring the level of sodium in the soil are required to lessen the detrimental effects of 

sodium. These insights, along with the vegetation mask creation approach for the differ-

entiation of vegetation and non-vegetation areas prior to cropland suitability classifica-

tion, strongly indicate that the proposed approach can be viable for a number of similar 

permanent crops. By applying microelements through foliar fertilization, permanent 

crops can receive sufficient amounts of elements necessary for growth and development 

regardless of poor soil conditions [71]. 

Future uses of remote sensing in agronomic management will frequently expand on 

the principles of conventional methods. Combining several vegetative indicators to calcu-

late agricultural productivity is one of the remote sensing technologies’ unrealized poten-

tials [72]. To represent spatio-temporal patterns in crops and soils, the data from vegeta-

tion indices could be enriched with climate data in order to provide useful information 

for decision-making [73]. Claverie et al. [74] used this approach for maize and sunflower, 

combining biomass phenology data throughout their vegetative season. Using a crop suit-

ability model and remote sensing, they linked the phenology stages of plant development 

yield prediction. Different wavelengths were identified by Guan et al. [75] to be able to 

predict agricultural production, although climate data was necessary for the assessment 

of crop growth characteristics. In widening the scope of cropland suitability using the bi-

ophysical properties, Zarco-Tejada et al. [76] investigated the application of chlorophyll 

fluorescence for the estimation of net photosynthesis. As crop growth enables most of the 

background soil visible until the crop entirely covers the ground, the vegetation indices 

indicated a mixture of plant and soil reflectance prior to the crop covering the soil. Future 

uses of remote sensing for agricultural issues will start to build relationships using ma-

chine learning and artificial intelligence to collect data with spatiotemporal properties. 

Artificial intelligence is already being applied to cropland suitability determination, and 

it has the potential to enhance both the interface between remotely gathered data and 

other data sources, as well as the updating of that data [3,77]. Assessing variations in crop 

emergence over time, crop vigor, and crop response to climatic conditions may be con-

ducted using this kind of technique. 

5. Conclusions 

With the further development of low-cost UAVs and open-source software intended 

for processing data collected by the UAV in GIS, more opportunities to apply these sys-

tems in agriculture are expected. The development of UAV application in cropland suita-

bility assessment is complimentary to precision agriculture, which enables performing 

agricultural fieldwork within agrotechnical deadlines, high productivity, a reduced num-

ber of operations, and the lowest cost of labor. 

This study proposed a micro-scale approach for the cropland suitability assessment 

of permanent crops based on a low-cost UAV, achieving spectral and topographic aspects 

of cropland suitability for the tangerine plantation. Additionally, the application of open-

source GIS software for supervised classification using machine learning algorithms and 

globally accepted FAO standard are expected to further improve the availability of its 

application for permanent crop plantation management. The performed study showed 

currently high suitability levels in both study subsets, with 63.1% suitable area in subset 

A and 59.0% in subset B. Despite that, the efficiency of agricultural production can be 

improved by managing crop, soil, and topographic properties in the currently non-suita-

ble class (N1), providing recommendations for farmers for further agronomic inspection. 

The use of a low-cost RGB sensor justified its use for the study aim, and the amount of 

collected data can be expanded by using multispectral, hyperspectral, and thermal sen-

sors. This increases the amount of collected data and enables the calculation of an even 

greater number of vegetation indices. Using a larger number of sensors increases the price 

of the UAV system, therefore, when buying a UAV, the farmers should carefully choose 
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which sensors are needed on a particular farm, taking into account the amount of arable 

land and the capabilities of those UAVs for the desired aim. 
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Appendix A 

Table A1. Mean values of input data rasters per FAO suitability class. 

Input Data Groups Input Data 
Mean Values per FAO Suitability Class 

S1 S2 S3 N1 N2 

Spectral bands 

B 72.267 75.612 78.451 75.953 90.690 

G 139.740 123.815 131.218 116.605 116.053 

R 120.629 106.702 114.524 100.348 105.024 

Spectral indices 

NGRDI 0.078 0.084 0.076 0.088 0.063 

GLI 0.187 0.161 0.161 0.151 0.098 

BI 130.617 115.747 123.306 108.985 110.878 

Topographic indices 

Total insolation 1858.409 1230.934 1555.098 874.781 452.934 

Flow accumulation 3.234 4.904 7.209 4.071 5.759 

Wind exposition 1.066 1.030 1.034 1.023 0.989 
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