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Abstract: In recent decades, precision agriculture and geospatial technologies have made it possible 

to ensure sustainability in an olive-growing sector. The main goal of this study is the extraction of 

olive tree canopies by comparing two approaches, the first of which is related to geographic object-

based analysis (GEOBIA), while the second one is based on the use of vegetation indices (VIs). The 

research area is a micro-location within the Lun olives garden, on the island of Pag. The unmanned 

aerial vehicle (UAV) with a multispectral (MS) sensor was used for generating a very high-resolu-

tion (VHR) UAVMS model, while another mission was performed to create a VHR digital orthophoto 

(DOP). When implementing the GEOBIA approach in the extraction of the olive canopy, user-de-

fined parameters and classification algorithms support vector machine (SVM), maximum likelihood 

classifier (MLC), and random trees classifier (RTC) were evaluated. The RTC algorithm achieved 

the highest overall accuracy (OA) of 0.7565 and kappa coefficient (KC) of 0.4615. The second ap-

proach included five different VIs models (NDVI, NDRE, GNDVI, MCARI2, and RDVI2) which are 

optimized using the proposed VITO (VI Threshold Optimizer) tool. The NDRE index model was 

selected as the most accurate one, according to the ROC accuracy measure with a result of 0.888 for 

the area under curve (AUC).  

Keywords: geospatial technologies; Lun olive groves; object-based image analysis; classification al-

gorithms; machine learning; accuracy assessment 

 

1. Introduction 

The olive tree is one of the oldest species in the Mediterranean area [1–3] which has 

been spreading throughout history and shaped the recognizable Mediterranean land-

scape [4,5]. Resistance to extreme climatic conditions and adaptability to different types 

of poorly fertile soils ensure the olive’s social, ecological, and economic benefits [6,7]. Sus-

tainability and preservation of olive trees are especially important [8] due to the frequent 

impacts of various economic activities such as industry, wildfires [9], and tourism sector 

activities [10,11]. Preservation mostly depends on sustainable environmental manage-

ment and precision agriculture (PA) methodologies [12–15]. Geospatial technologies and 

their products have become easily available and widely accessible in everyday life, which 

has advanced and accelerated their use in various research [16–19]. The development of 

advanced geospatial technologies has enabled PA in the olive management sector, espe-

cially in the context of precise canopy extraction for management [20–22], monitoring [23–

25], assessment of crop quality [26], disease detection [27], and preventive actions [28]. 
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Therefore, geospatial technologies have a meaningful role in the observation and analysis 

of various processes located on the Earth’s surface. 

Unmanned aerial vehicles (UAVs) are objects that can be controlled remotely or have 

a pre-set programmed flight plan [29,30], and their main advantage is the competency to 

collect very high spatial resolution data [31,32]. The use of UAVs has become necessary 

for most scientists in terms of collecting high spatial resolution data necessary for con-

ducting interdisciplinary research [33–35]. UAVs have been applied significantly for re-

mote sensing of vegetation and natural regions. UAV-based RS applications provide con-

siderably better resolution and more flexibility in choosing acceptable payloads and ap-

propriate spatiotemporal resolution than satellite-based RS applications [36]. Due to the 

enhancement of geomorphic elements over the landscape, the creation of UAV-derived 

datasets, such as orthomosaics and high-resolution digital elevation models, enables the 

characterization and geometrical analysis of the channels, improving their identification 

in areas with vegetation [37]. In the process of remote sensing, multispectral (MS) sensors 

are one of the most powerful tools for a better understanding of environmental processes 

[38]. Moreover, they are one of the most frequently used sensors, which was primarily 

influenced by their exceptional applicability in forestry, PA, and other economic activities 

that are closely related to vegetation [34]. MS sensors provide insight into the part of the 

electromagnetic spectrum that is invisible to the human eye, and in terms of remote sens-

ing, they represent a significant contribution with the aim of better understanding envi-

ronmental processes [38,39]. MS sensors play a leading role in PA, mostly due to the pos-

sibility of extracting vegetation indices (VIs) [40].  

VIs are one of the more widely used indicators within the geospatial analysis and PA 

[13,41,42] and are defined as the result of a combination of two or more spectral bands 

[43–45]. Analysis of VIs is generally performed with the use of MS sensors, enabling the 

classification of the study area based on spectral characteristics [46,47]. VIs are primarily 

used to distinguish observed crops or analyze the canopies of various plants [15,48]. A lot 

of authors use VIs in order to reach some new knowledge and conclusions regarding the 

vegetation in agriculture sectors. In [48], three VIs (GNDVI, NDVI, SAVI) is used to mon-

itor the vegetation phases of vineyard and tomato crops. In [19] for PA, five VIs models 

(NDVI, GNDVI, SAVI, BNDVI, GSAVI) are derived to extract the chestnut canopies. In 

[13], WorldView-3 satellite imagery is used to extract and analyze VIs inside olive tree 

canopies.  

Classifications of observed surfaces can be performed using various methods, and 

apart from the mentioned approach based on VIs, still, the most used approach is related 

to geographic object-based analysis (GEOBIA) [49,50]. GEOBIA is defined as a subdisci-

pline of geographic information systems (GIS) focused on the processing and analysis of 

raster data [51]. Unlike pixel-based analyses, GEOBIA groups pixels into meaningful ho-

mogeneous units according to their spectral characteristics [49]. The main difference be-

tween the VIs approach and GEOBIA is the different use of MS images and the data they 

contain. VIs use pixel information to create certain VI model, which is later processed 

within the VITO tool. On the other hand, GEOBIA requires the use of randomly selected 

training samples to gather data about the landscape in order to successfully carry out the 

classification. Sometimes, the accuracy might well be determined only by the selection of 

inadequate training samples. Comparison and accuracy assessment of olive trees canopy 

extraction based on VIs and the GEOBIA approach is important in PA, intending to im-

prove the sustainable management of olive groves and other plants with similar vegeta-

tive characteristics.  

Other methods in the process include deep learning classifier, which success is based 

on deep neural networks (DNN) [52]. Deep learning is a computer-based modeling tech-

nique that consists of numerous processing layers and is used to comprehend how data is 

represented at various levels of abstraction [53]. It is still debatable whether or to what 

extent deep learning techniques can outcompete other state-of-the-art and support vector 
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machine (SVM) algorithms in the context of classification using GEOBIA, despite the re-

cent explosion in popularity of DNNs [54]. Although a deep learning classifier was not 

utilized in this study, it will undoubtedly be considered in future research.  

The main goal of this research is to compare the accuracy in the extraction of olive 

tree canopies between the GEOBIA approach and the approach based on VIs. The second-

ary objectives are to determine the best of the three tested classification algorithms in the 

GEOBIA approach and to optimize and select the most representative VI to extract the 

olive tree canopy. 

2. Materials and Methods 

2.1. Study Area 

The study area for the comparison of two approaches when extracting olive tree can-

opies is a micro-location within the area of the Lun olive gardens. The Lun olive groves 

are positioned in the northwestern part of the island of Pag, in the immediate vicinity of 

the Lun settlement (Figure 1). Lun olive garden is one of the most valuable natural phe-

nomena on the island of Pag, and in 1963 the area was entered into the register of protected 

natural objects and declared a botanical reserve. The thousand-year-old wild olives within 

the research area are part of the “Natura 2000” ecological network. More than 80 thousand 

trees, spread over about 24 hectares, represents a very rarely seen phenomenon in the 

world since thousand-year-old olive trees are mostly found alone or in smaller groups 

[55]. 

  

Figure 1. Study area: (a) Test area in Lun olive gardens; (b) island of Pag; (c) Croatia. 
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2.2. The Methodological Framework 

The research methodology comprises the next steps: field research and data collec-

tion (1); creation of UAVMS and digital orthophoto (DOP) (2); the GEOBIA analysis (3), the 

proposed method based on VIs (4); approaches accuracy assessment comparison (5) (Fig-

ure 2). 

 

Figure 2. The research methodology framework. 

2.3. Field Research 

The field research was conducted on 19 October 2021. Aerial photogrammetry was 

carried out in this part of the year because at that time the olives enter the stage of ma-

turity, during which all the branches have a similar reflection. The second reason relates 

to the pruning of olive trees, which most often takes place in the winter period [56]. Two 

aerial photogrammetry missions were conducted for this study. The first mission included 

the use of the MicaSense RedEdge-MX Dual MS camera (Table 1), while the Sony RX1R II 

RGB sensor was used in the second mission. Both sensors are mounted as an integral part 

of the Trinity F90+ UAV, which provides excellent capabilities in terms of imaging and 

collecting data from very large and inaccessible areas. In addition to the mentioned geo-

spatial technology, RTK GNSS Trimble R8s was used to collect checkpoints (CP) and ref-

erence points (RP). 
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Table 1. MicaSense RedEdge-MX Dual MS specifications 

Sensor Type Multispectral (MS) 

Spectral Bands 

Coastal blue (444 nm), blue (475 nm), green (531 nm), green 

(560 nm), red (650 nm), red (668 nm), red edge (705 nm), 

red edge (717 nm), red edge (740 nm), near-infrared (842 

nm)  

Ground Sample Distance  8 cm per pixel (per band) at 120 m 

Data Acquisition 

Before any UAV imaging, the first step of data acquisition involved marking and 

collecting CP and RP on a local geodetic basis. A total amount of 7 CPs were collected, 

which were used to check the accuracy of the UAV’s direct georeferencing system. The 

RPs where the UAV’s positioning device or base station iBase was placed, were also col-

lected. All points were measured in the official projection coordinate system of the Croa-

tian Terrestrial Reference System (HTRS96/TM). The next step was related to the planning 

of the UAV missions, which was carried out using the QBase 3D software (Figure 3). MS 

imaging mission was carried out with a front and side overlap of 70%, while considering 

the terrain morphology and the desired level of detail, the relative flight altitude was set 

to 100 m. Settings provided a ground sampling distance (GSD) for the UAVMS of 6.94 

cm/px (Figure 3). On the other hand, the settings of the second mission related to the RGB 

sensor were set to front and side overlap of 75% and the relative flight altitude of 140 m. 

The expected GSD for DOP was 1.81 cm/px. Before the flight, the process of calibration of 

the UAV’s initial measurement systems (IMUs) was carried out, followed by the radio-

metric calibration of the MS sensor, using the appropriate reference calibration panel. Af-

ter the processes, aerial photogrammetric imaging of the selected research area was per-

formed. The radiometric calibration of the MS sensor was repeated after a mission to de-

termine any differences in the atmospheric conditions.  

  
Figure 3. Field work; (a) Trinity F90+ MS mission; (b) Trimble R8s CPs and RP collecting. 

2.4. UAV Imagery Processing 

Images were primarily geocoded using UAV’s Flylog records and the data from the 

base station. Then, MS and RGB images were processed using Agisoft Metashape 1.5.11, 

which was mostly used because of the implemented structure-from-motion (SfM) and 3D 

modeling algorithms based on overlapping 2D images. After a series of appropriate set-
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tings and steps such as photo orientation, creation of a dense cloud of points, deep filter-

ing, and optimization of sensor locations, a 3D model was obtained and exported as 

UAVMS and DOP. 

2.5. GEOBIA 

2.5.1. MS Bands Layout 

The selection of the MS bands layout depends on the type and characteristics of the 

vegetation that is selected [13]. Coastal blue and blue bands are significant for coastal ap-

plications, such as deep-water masks differentiation or water body penetration. The green 

band is applicable for distinguishing crop types and bathymetry, while the yellow band 

is intended for leaf coloration, plant stress, or separability of iron formations. The red band 

is used for the detection of chlorophyll absorption or plant species and stress. Various red 

edge bands are commonly used to detect vegetation health and stress, while the near-

infrared band is preferred for biomass surveys, type and age discrimination, and plant 

stress detection. Since the objects of this research are olive tree canopies, the selection of 

band arrangement is conditioned by the spectral reflectance of olive trees which is the best 

in all bands except blue ones. Therefore, when choosing the band layout, various combi-

nations were visually compared.  

2.5.2. Segmentation 

The second step in the GEOBIA process of extracting olive tree canopies is segmen-

tation, a process based on the Mean shift approach implemented in ArcGIS. The Segment 

Mean Shift tool identifies the characteristics or segments in images by clustering pixels 

with similar spectral, spatial, and geometrical characteristics. The image segment charac-

teristics are determined by the spectral detail, the spatial detail, and the minimum size of 

the segment. An iterative process was used to optimize the values of the aforementioned 

parameters (n = 42). Based on the visual interpretation of the UAVMS segmentation results, 

the best combination of parameter values was chosen (Figure 4). 

 
Figure 4. Differences between various segmented models: (a) spectral detail; (b) spatial detail; (c) 

minimum segment size. 
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2.5.3. Test Samples 

The third step refers to adding test samples to the segmented model. Select Segment 

tool within the Training Sample Manager was used to add samples. When adding, the 

appropriate number of classes that will represent the research object, as well as the num-

ber of other classes within the observed area, is optimized. The research object, i.e., the 

olive tree canopies, was collected within four classes (Figure 5), mostly due to the mor-

phology and the solar incidence angle, which caused differences in the spectral reflection 

within the canopies. 

 
Figure 5. Adding olive tree class samples. 

2.5.4. Classification 

Classification of the segmented footage was performed using three classification al-

gorithms: (1) Support vector machine (SVM), (2) maximum likelihood classifier (ML), and 

(3) random trees classifier (RTC). Models were classified into 14 classes and then reclassi-

fied into “olive tree canopies” and “other classes. Details on each classification algorithm 

and its conduct in the classification process are discussed in Sections 3.2.3 and 3.2.4. 

2.5.5. Accuracy Assessment 

The GEOBIA process was concluded with the selection of the most accurate classifi-

cation algorithm. Accuracy assessment was performed using producer accuracy (PA), 

user accuracy (UA), overall accuracy (OA), and kappa coefficient (KC) measures. PA rep-

resents the likelihood that a reference pixel was correctly classified, whereas UA repre-

sents the likelihood that a classified pixel represents that class on the ground [57]. The 

quotient of the total number of correct pixels and the total number of pixels in the error 

matrix is represented by OA [58,59], while KC represents a measure of the relationship 

between classified and reference data, shown by the confusion matrix’s main diagonal, 

and by random matching represented by the sums of the columns and rows of the matrix 

[60,61] 

𝑃𝐴𝑖 =
𝑃𝑖𝑖

𝑃 + 𝑖
 (1) 

𝑈𝐴𝑖 =
Pii

Pi +
 (2) 

OA = ∑ Pii

𝑚

𝑖=1

 (3) 

𝐾𝐶 =
𝑁 ∑ 𝑃𝑖𝑖 − ∑ (𝑝𝑖+ ∗ 𝑝+𝑖)

𝑟
𝑖=1  𝑟

𝑖=1

𝑁2 − ∑ (𝑝𝑖+ ∗ 𝑝+𝑖)
𝑟
𝑖=1

 (4) 

where pii represents the major diagonal element for class I, pi+1 represents the total number 

of observations in column I (bottom margin), pi+ represents the total number of observa-

tions in row I (right margin), and m represents the number of rows and columns in the 
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error matrix. PA, UA, and OA values range from 0 to 1. A higher value indicates greater 

precision. Accuracy assessment was performed using layers of regularly spaced points 

generated within polygons representing reference trees (RT) and false trees (FT). This 

method ensures hundreds of thousands of samples are positioned within the RT and FT, 

insuring the most accurate results [62,63]. 

The first step involved the vectorization of nine RT and nine FT from very high-res-

olution DOP (Figure 6a,b). The next step involved creating a point layer for each pixel, i.e., 

fishnet within the RT and FT polygons (Figure 6c). Furthermore, for each point, an attrib-

ute is added within the attribute table, which refers to the actual value of the point on the 

ground (0 or 1) (Figure 6d). Validation polygons were created using VHR DOP with a 

spatial resolution of 1.88 cm.  

 
Figure 6. Accuracy assessment steps: (a) RT vectorization; (b) FT vectorization; (c) fishnet; (d) at-

tribute table. 

2.6. Vegetation Indices (VI) 

VIs were generated using a Raster calculator tool within ArcGIS, which allows the 

input of different spectral bands into the corresponding formula of the VI.  

2.6.1. VITO Tool 

The proposed VITO (vegetation index threshold optimizer) tool was created to auto-

mate the process to separate olive tree canopies using selected VIs. As input data, the 

VITO tool primarily uses previously vectorized polygons of olive tree canopies. First, by 

using the Feature vertices to Points tool, the breaking points of the olive canopies are ex-

tracted. This layer of points represents the outer part of the olive tree canopy, while the 

inner part is generated with the Create Fishnet tool, as a layer of regularly spaced points. 

Both sets of point layers are prepared for merging as they represent reference samples for 

the second part of the tool. On the other side of the tool scheme, the VITO tool uses a 

chosen VI model as input data, after which the model values are added to the recently 

merged layer of points. To utilize the Reclass by Table tool, which uses statistics to pro-

duce output results in the form of classified olive tree canopies, all extracted data is doc-

umented in the form of a table, using the Summary Statistics tool. After the reclassification 

process, the final result of the VITO tool is extracted olive tree canopies (Figure 7).  
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Figure 7. VITO tool scheme. 

2.6.2. Accuracy Assessment 

The accuracy of the VIs olive tree canopies models was accessed using AUC (area 

under the curve) values obtained from ROC (receiver operating characteristics) curves. 

ROC curve is a graphic diagram that illustrates the diagnostic ability of a certain classifier 

system, and it is created using TRP (true-positive rate) and FPR (false-positive rate) values 

of the observed model [64,65]. ROC curves are commonly calculated by either utilizing 

the design sample reuse approach or by applying the classification rule to a test set of 

points with known classes. While the AUC represents the possibility that a randomly se-

lected member of class 1 will have a lower estimated chance of being a member of class 0 

than a randomly selected member of class 0 [66]. ROC or AUC are often used wherever it 

is necessary to verify or visualize the performance of multi-class classifications [67]. The 

creation of ROC curves and AUC values is a fully automated process using the Calculate 

ROC Curves and AUC Value tool, which was integrated into ArcGIS within the ArcSDM 

Tools set. 

2.7. Comparison of Classification Approaches 

The first way of implementing accuracy measures to compare approaches included 

layers of regular distribution of points (fishnet) within polygons of RT and FT. Polygons 

were evenly distributed within the research area (Figure 8), to reduce the possibility of 

error and obtain the most accurate results. The tools Compute Confusion Matrix and Cal-

culate ROC Curves and AUC Values within ArcGIS created confusion matrices and ROC 

curves for each of the two approaches.  
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Figure 8. Distribution of RT and FT. 

The second way of comparison was carried out using a layer of one thousand ran-

domly distributed points (Figure 9) created using the Create Accuracy Assessment Points 

tool. Points are also randomly distributed within the research area. For each point, based 

on the very high-resolution reference DOP, an attribute was added that indicates the real 

belonging to the class in space, i.e., 0 for the other class and the value 1 if the point in the 

research area is inside the olive tree canopy. Using the same tools as in the first compari-

son method, confusion matrices and ROC curves were created, which contain the results 

of the accuracy measures used. 

  
Figure 9. Thousand randomly distributed accuracy assessment points.  

3. Results and Discussion 

3.1. UAV-MS and DOP Creation 

With the MS sensor, a total of 4840 images were taken. The images were collected 

from 484 locations, considering that the MicaSense RedEdge-MX Dual Camera sensor 

from one location records the area simultaneously with ten different spectral bands. The 

MS model with a spatial resolution of 4.14 cm consists of ten separate spectral bands, the 

order of which can be independently changed and combined to find the best spectral 

bands layout for the observed objects. DOP was also generated in Agisoft Metashape 1.5.1. 

using 927 images, yielding a spatial resolution of 1.88 cm.  



Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 20 
 

3.2. GEOBIA 

An optimal combination of spectral bands was chosen by visual analysis using the 

Symbology tool within ArcGIS. The band combination layout 10-9-8 (NIR, RedEdge 740, 

RedEdge) was chosen as the optimal one due to the possibility of very good differentiation 

of olive tree crowns compared to other vegetation (Figure 10). 

 
Figure 10. MS model with 10-9-8 bands layout. 

3.2.1. Segmentation 

By visual interpretation of the generated models, a model with values of spectral de-

tail 18, spatial detail 11, and minimum segment size 15 was selected (Figure 4). The stated 

values are similar to the values used in research in which the GEOBIA approach to vege-

tation mapping was applied [13,63,68]. 

3.2.2. Test Samples 

In all, 2946 samples were collected within 14 classes. In addition to the four classes 

related to olive tree canopies, test samples were added for the class of shadows, classes of 

anthropogenic objects such as house roofs, macadam and asphalt surfaces, classes of sur-

face karst area and soil with karst, and classes related to canopies of other vegetation 

types. 

3.2.3. Results of Classification Algorithms 

The SVM classification algorithm (Figure 11a) enabled distinguishing the class of ol-

ive canopies. The majority of the olive trees in the study area are well known in their 

surroundings. However, there are some shortcomings in the class of other vegetation, 

where areas that belong to the class of other vegetation are incorrectly classified as olives 

in some areas. Moreover, the volume of the olive canopies in certain parts is reduced due 

to the influence of shadows, especially on the axial side of the canopies. Classification 

algorithm MLC (Figure 11b) classifies and differentiates the shadows much better than 

the olive tree canopies class. On the other hand, the algorithm recognizes less the differ-

ences between the olive class and other vegetation, i.e., it more often classifies olives under 

the other vegetation class. The RTC algorithm separates the olive canopies class accurately 

and shows the fewest shortcomings compared to others (Figure 11c). RTC differentiates 

less well the spatial distribution of classes within the study area. Namely, shadows are 

very poorly recognized, while surfaces covered with karst are very often classified under 

the soil class. But, since the object of research are olive tree canopies, RTC ultimately 

shows very good results. 
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Figure 11. Classified models: (a) SVM; (b) MLC; (c) RTC. 

3.2.4. Accuracy of Classification Algorithms 

RTC proved to be the most reliable classification algorithm. RTC values (Table 2) 

produced the best results in three of the four accuracy measures used. The best results 

were achieved with UA, OA, and KC. The classification algorithm ML in all used measures 

shows slightly less accurate results compared to RTC. ML shows the least accurate results 

in PA, UA, and KC values, while it is more reliable than SVM according to OA. The SVM 

classification algorithm shows the least reliable results according to the OA, while the best 

values are related to the PA. The results of the accuracy assessment using UA and KC are 

in the middle between the results of the two algorithms. 

Table 2. GEOBIA accuracy assessment measures results.  

Algorithm/Measure UA PA OA KC 

RTC 
0.8113 0.9195 

0.7565 0.4615 
0.7378 0.5144 

MLC 
0.7729 0.8997 

0.7418 0.4311 
0.7306 0.5071 

SVM 
0.7511 0.8818 

0.7403 0.4328 
0.7361 0.5302 

Authors in [68] used SVM, MLC, and RTC algorithms to extract coastal coniferous 

forests, and by accuracy assessment measure KC, the RTC algorithm was selected as the 

most accurate one. In [69], RTC shows the best performance in object-based land-cover 
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classification. In [63], the most accurate results for olive tree canopies extraction were 

shown by the SVM classification algorithm with 0.904 results in the AUC measure, while 

the second one was the MLC algorithm with 0.864. More accurate results in the mentioned 

study are explainable by greater study area and lower spatial resolution with a GSD of 18 

cm for UAVMS. 

3.3. Vegetation Indices 

3.3.1. Derived VIs Models 

The NDVI model (Figure 12a) qualitatively separates areas under vegetation but 

shows shortcomings in differentiating types of canopies. The NDRE VI model (Figure 12b) 

distinguishes vegetation and shows olive tree canopies with high reliability. The GNDVI 

index model (Figure 12c) was chosen due to its ability to distinguish types of vegetation 

within the study area, while the MCARI2 index model (Figure 12d) reliably distinguishes 

vegetation surfaces. The last derived model of the RDVI2 index (Figure 12e) was chosen 

due to its ability to recognize olive trees in relation to other vegetation. 

 

Figure 12. VIs models: (a) NDVI; (b) NDRE; (c) GNDVI; (d) MCARI2; (e) RDVI2. 
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3.3.2. VITO Tool Results 

The olive tree canopies of five selected VIs were extracted using the VITO tool. The 

models are classified into the class “olive tree canopies” and the class “other” (Figure 13). 

Differences in the size and spatial distribution of olive canopy class surfaces vary between 

VIs, which is expected given the different formulas and spectral bands used when gener-

ating the indices. 

  
Figure 13. VIs classified models: (a) NDVI; (b) NDRE; (c) GNDVI; (d) MCARI2; (e) RDVI2. 

3.3.3. Accuracy of VIs Models 

The most accurate results are shown by the NDRE VI model, while all other models 

show significantly lower accuracy (Figure 14). 
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Figure 14. ROC curves and AUC values for VIs models. 

The NDRE VI models are often used in many studies involving canopies extraction 

of different types of vegetation. In [70], the NDRE VI model is used for predicting grain 

yield in rice, while in [71] it is used for detecting spatial and temporal variations in soy-

bean crops. Many authors such as [13,40,72] used NDRE as the main VIs model in their 

studies related to the olive-growing sector. On the other hand, the most used VI for the 

purpose, the NDVI model [73–75], is showing the least accurate results in this study.  

3.4. Results of Used Approaches Comparison  

The approach based on VIs shows slightly better results in terms of extracting the 

olive tree canopies compared to the GEOBIA approach, according to five measures of ac-

curacy. In the method of testing the accuracy with the use of regularly distributed points 

within the RT and FT, the VIs showed better results in four of the five measures used. 

According to the measures of AUC (Figure 15), PA, UA, and KC, the approach based on 

VIs is more accurate, while the GEOBIA approach showed slightly better results only in 

the measure of OA (Table 3). 

Table 3. Accuracy assessment results for RT and FT polygons comparison.  

Algorithm/Measure UA PA OA KC 

VIs (NDRE) 
0.9388 0.9394 

0.7519 0.5228 
0.6281 0.6257 

GEOBIA (RTC) 
0.8113 0.9195 

0.7565 0.4615 
0.7378 0.5144 
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Figure 15. ROC curves and AUC values for RT and FT polygons comparison.  

The second accuracy check method based on a layer of one thousand randomly dis-

tributed points confirms the results obtained by the first method. The results of all five 

used accuracy measures indicate the selection of the approach based on VIs was more 

accurate in the extraction of the olive tree canopies than the GEOBIA approach (Table 4) 

(Figure 16). 

Table 4. Accuracy assessment results for 1000 points comparison. 

Algorithm/Measure UA PA OA KC 

VIs (NDRE) 
0.9194 0.9893 

0.9180 0.6311 
0.9043 0.5380 

GEOBIA (RTC) 
0.9634 0.8135 

0.8170 0.4855 
0.4567 0.8354 

  
Figure 16. ROC curves and AUC values for 1000 points comparison. 
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4. Conclusions 

Very high-resolution UAVMS was generated for the micro-location within the area of 

the Lun olive gardens on the island of Pag. Generated UAVMS with a spatial resolution of 

4.14 cm was used to generate GEOBIA and VIs models in the olive tree canopies extraction 

process. In the GEOBIA approach, three classification algorithms were tested, which re-

sulted in choosing the RTC model as the most accurate one (OA = 0.7565), although mod-

els SVM (OA = 0.7418) and MLC (OA = 0.7403) showed also very satisfying results. The 

second approach, which included VIs, showed significantly greater deviations in the ac-

curacy assessment results, with the most accurate NDRE VI model resulting in 0.888 and 

the NDVI model resulting in 0.619 in the AUC measure. Deviations can be explained 

mostly due to the different spectral band formulas which were used in the generation 

process.  

In the final comparison, accuracy assessment metrics revealed that the VIs approach 

is more accurate than the GEOBIA approach in the extraction of olive tree canopies. VI 

NDRE model showed better results in both compared methods. In the first method which 

included polygons of RT and FT, the VI NDRE model resulted in 0.888 in AUC and 0.7519 

in OA, while GEOBIA RTC resulted in 0.880 in AUC and 0.7565 in OA. The above-men-

tioned shows that the GEOBIA approach is also very reliable in the olive tree canopies 

extraction process; but in this study, VIs model showed better results. In conclusion, the 

GEOBIA method takes a lot of time with all steps combined and the process complexity, 

while the method with VIs is a very fast and efficient method with accuracy resulting 

mostly even or higher results than the GEOBIA, an approach created for the purpose. 
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